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Overview

e FOIA
o What
o Simplification
o SSE

m Threat model

e Verifiable SSE

o Algorithm
o Security properties
o System demonstration

e Extensions



The FOIA setting




FOIA

e Request information from government/University
o Emails
o Files
o Documentation
o Voicemail messages

e Examples

o Collaboration between industry and academia
o The Amazon Ring case (2019, [1])

m Privacy concerns

m Data handling



FOIA- emails by keyword

e Given keywords, return all
containing emails

e Desired
o Preserve privacy of email owner
m Avoid storing plaintext on
cloud
o Prevent manipulation by server
o Prevent manipulation by client
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SSE

e Symmetric Searchable Encryption
e Honest client
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Threat model

e Adversarial CSP

o Will store provided emails without tampering or deletion
o May try to learn information about underlying plaintext
o May suppress a fraction of the emails from a search query

e IND-CKA2 security
e UF-CKA security



Algorithm

— (K,Params) < KeyGen(k): is a probabilistic algorithm that takes the se-
curity parameters k as input and outputs the key K and system parameters.

— 7 < BuildIndex(F,K): is a probabilistic algorithm executed by the user,
that takes the set of plaintext files F and the key K as input and outputs the
secure index L.

— 75 < SearchT oken(w, K): is a deterministic algorithm executed by the user,
that takes the key K and search keyword w as input and outputs the search

token Ts.



Algorithm

— (z,Tag) « Search(rs,I): is a deterministic algorithm run by the CSP,
which takes the secure index Z and search token Ts as input and outputs
the obscured bitmap x and verification tag Tag.

— {T'rue, False} < Verify(Tag,x,id(w)): is an algorithm executed by the
user, that takes verification tag Tag, obscured bitmap x, keyword identifier
id(w) and key K as input and outputs verification result of search outcome.
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Implementation Details

KeyGen(k) : This algorithm is run by the user to generate the set of keys used
in the scheme. Choose three cryptographic MAC’s defined as follows:

— H; :{0,1}* x {0,1}* — {0,1}"
— Ha w 10,1} X {0,1}* X {0,1)° — {0, 1}*
— Hs3:{0,1}" x{0,1}™ x {0,1}* — {0,1}"

Where, the first inputs are cryptographic keys. Output the key K = (K1, K2, K¢, Kp) &

{0,1}"



Implementation Details

BuildIndex(F,K) : This algorithm is run by the user to generate and output
the secure index Z = (T%,Ts). Generation of Ty: For i« = 1 to m, compute
ci = SKE.Enc(Ke,, f;) and store the tuple (i, c;) as a row in 7.

Generation of T: Extract the keywords in F and set W = {wy,...,wy}
and for all w; in W :

— Generate identifier id(w;) = Hy (K1, w;)

— Choose r; & {0,1}" and obtain mask h; = Ha(Ks, w;,7;)

— Create the bitmap B,,(w;)[j] = 1 for all j € index of encrypted files having
the keyword w;.

- Compute r; = Bm('wz) D hz and Tagz = Hg(Kh, Bm(wz),zd(wz))

— Store (key,value, Tag) = (id(w;), z;||r;, Tag;) as a row in Tj.



Implementation Details

Verify (x;||ri, Tag;) : This algorithm is run by the user to verify the correctness
of the search outcome sent by CSP.

— Parse and extract r; from z;||r;.

— Compute the keyword identifier id(w;) = H1 (K1, w;).
— Compute the mask h; = Ho(Ko, w;,7;).

— Extract the bitmap B,,(w;) = z; ® h;.

— Calculate Tag, = H3(Kp, B (w;),id(w;)).

— If (T'ag: = Tag;) output True; else output False.



Implementation Details

e Use HMAC

o A secure PRF is a secure MAC

(@)

HMAC is a secure PRF as long as the compression function is a secure
PRF (2014, [2])

e Use AES-CFB
o CPA secure
o No padding required






Extensions
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