VSSE: application to FOIA

Monica Pardeshi, Shengyu Ge and Milind Kumar V

Overview

e FOIA
o What
o Simplification
o SSE

m Threat model

e Verifiable SSE

o Algorithm
o Security properties
o System demonstration

e Extensions

The FOIA setting

FOIA

e Request information from government/University
o Emails
o Files
o Documentation
o Voicemail messages

e Examples

o Collaboration between industry and academia
o The Amazon Ring case (2019, [1])

m Privacy concerns

m Data handling

FOIA- emails by keyword

e Given keywords, return all
containing emails

e Desired
o Preserve privacy of email owner
m Avoid storing plaintext on
cloud
o Prevent manipulation by server
o Prevent manipulation by client

Verifier

keyword /

query

A Dishonest

response

Potentially malicious

SSE

e Symmetric Searchable Encryption
e Honest client

Potentially malicious
— Semi-Honest but Curious Current
Emails i O
b VSSE Honest client focus
—_ Verifier need not exist as
: Q client yields honest
Client ~ “vev rabpings
“Dishonest resppnse C IO Ud Email set fixed

Honest but curious server
Honest client

SSE Verifier need not exist as
client yields honest
response

Email set fixed

Threat model

e Adversarial CSP

o Will store provided emails without tampering or deletion
o May try to learn information about underlying plaintext
o May suppress a fraction of the emails from a search query

e IND-CKA2 security
e UF-CKA security

Algorithm

— (K,Params) < KeyGen(k): is a probabilistic algorithm that takes the se-
curity parameters k as input and outputs the key K and system parameters.

— 7 < BuildIndex(F,K): is a probabilistic algorithm executed by the user,
that takes the set of plaintext files F and the key K as input and outputs the
secure index L.

— 75 < SearchT oken(w, K): is a deterministic algorithm executed by the user,
that takes the key K and search keyword w as input and outputs the search

token Ts.

Algorithm

— (z,Tag) « Search(rs,I): is a deterministic algorithm run by the CSP,
which takes the secure index Z and search token Ts as input and outputs
the obscured bitmap x and verification tag Tag.

— {T'rue, False} < Verify(Tag,x,id(w)): is an algorithm executed by the
user, that takes verification tag Tag, obscured bitmap x, keyword identifier
id(w) and key K as input and outputs verification result of search outcome.

System model

PC (computationally powerful)

Index

Query

L 4

Lighter device

Emails

Response(query)

<

CSP

Implementation Details

KeyGen(k) : This algorithm is run by the user to generate the set of keys used
in the scheme. Choose three cryptographic MAC’s defined as follows:

— H; :{0,1}* x {0,1}* — {0,1}"
— Ha w 10,1} X {0,1}* X {0,1)° — {0, 1}*
— Hs3:{0,1}" x{0,1}™ x {0,1}* — {0,1}"

Where, the first inputs are cryptographic keys. Output the key K = (K1, K2, K¢, Kp) &

{0,1}"

Implementation Details

BuildIndex(F,K) : This algorithm is run by the user to generate and output
the secure index Z = (T%,Ts). Generation of Ty: For i« = 1 to m, compute
ci = SKE.Enc(Ke,, f;) and store the tuple (i, c;) as a row in 7.

Generation of T: Extract the keywords in F and set W = {wy,...,wy}
and for all w; in W :

— Generate identifier id(w;) = Hy (K1, w;)

— Choose r; & {0,1}" and obtain mask h; = Ha(Ks, w;,7;)

— Create the bitmap B,,(w;)[j] = 1 for all j € index of encrypted files having
the keyword w;.

- Compute r; = Bm('wz) D hz and Tagz = Hg(Kh, Bm(wz),zd(wz))

— Store (key,value, Tag) = (id(w;), z;||r;, Tag;) as a row in Tj.

Implementation Details

Verify (x;||ri, Tag;) : This algorithm is run by the user to verify the correctness
of the search outcome sent by CSP.

— Parse and extract r; from z;||r;.

— Compute the keyword identifier id(w;) = H1 (K1, w;).
— Compute the mask h; = Ho(Ko, w;,7;).

— Extract the bitmap B,,(w;) = z; ® h;.

— Calculate Tag, = H3(Kp, B (w;),id(w;)).

— If (T'ag: = Tag;) output True; else output False.

Implementation Details

e Use HMAC

o A secure PRF is a secure MAC

(@)

HMAC is a secure PRF as long as the compression function is a secure
PRF (2014, [2])

e Use AES-CFB
o CPA secure
o No padding required

Extensions

Verifier

keyword| Dishonest
qtery response

Potentially malicious

.

S —

_
Client Emails Cloud

PDVSSE

Functional email
implementation

Client

A
)

Potentially malicious

Fe——
3 e |
Cli t< S
en Cloud -&N
=
Client
Final
implementation

Potentially malicious

Client Query
St Cloud

DVSSE

Semi-Honest but Curious
server

Honest client

Verifier need not exist as
client yields honest
response

Email set can be updated

VSSE

Semi-Honest but Curious Current
server

Honest client focus
Verifier need ot exist as

client yisids honest

response

Email set fixed

SSE

Honest but curious server
Honest client

Verifier need not exist as
client yields honest
response

Email set fixed

References

1. https://sgandlur.com/category/amazon-ring/
2. https://eprint.diacr.org/2006/043.pdf

https://sgandlur.com/category/amazon-ring/
https://eprint.iacr.org/2006/043.pdf

Thank you!

