
Verifiable Symmetric Searchable Encryption
for FOIA compliance

ECE 407: Cryptography, UIUC

Advisor: Prof. Andrew Miller
Authors: Monica Pardeshi, Shengyu Ge, Milind Kumar V

1

Contents

1 Introduction 4

2 Related work 5

3 Our contributions 5

4 Setting 5

5 Implementation details 7

5.1 Underlying algorithm . 7

5.2 Data . 9

5.2.1 Keywords . 10

5.2.2 Emails . 10

5.3 Design decisions . 10

6 Security Analysis 10

6.1 IND-CKA2 . 11

6.2 UF-CKA . 11

6.3 IND-CMA . 12

6.4 VSSE . 12

7 Future work 12

8 Conclusion 13

2

List of Figures

1 Using search time as a proof [1] . 6

2 VSSE KeyGen [2] . 7

3 VSSE BuildIndex [2] . 8

4 VSSE SearchToken [2] . 8

5 VSSE Search[2] . 9

6 VSSE Verify[2] . 9

3

Abstract

The Freedom of Information Act [3] (FOIA) allows citizens of a democracy to re-
quest access to documents- emails, memos, voice messages and so forth- concerning the
functioning of the government. In this work, we address the problem of retrieving all the
emails of a user- presumably an employee at a public institution obligated to respond
to FOIA requests- containing a specific keyword while preserving the privacy of their
emails. This is done using Verifiable Searchable Symmetric Encryption (VSSE). SSE
schemes ensure that a curious Cloud Service Provider (CSP) learns nothing about the
stored emails by suitably encrypting their plaintexts while maintaining the capability
to search the stored data for specific tokens. The verifiability ensures that a CSP does
not suppress a part of query response which is crucial to the FOIA setting. The result
of our work is an open-source Python application that implements the desired VSSE
scheme.

1 Introduction

Under the Freedom of Information Act (FOIA) in the United States of America [4], [3] the
Government is required to disclose, partially or completely, documents previously controlled
by it upon request. This process is crucial to the democratic functioning of the state and
applies to most files, documentation and correspondence - emails, voice messages, etc. gen-
erated during its operation. In this work we will look at the specific task of retrieving all
emails that contain a given word, called keyword henceforth, presumably originating from
a FOIA query, under the assumption that all communication is end to end encrypted. For
example, this could involve returning all the emails containing the word “contract” in them
upon request.

Without the assumption of end to end encryption, a naive method to retrieve emails
containing a queried word would be to have the email server search through the plaintexts of
the emails sent by a user and return the relevant ones. However, this requires that the server
have access to the plaintexts of all the emails sent by the user. This is not desirable. When
communications are encrypted, the server only sees the ciphertexts of the messages generated
by the user but is unable to retrieve the messages (rather, their ciphertexts) containing the
queried word. A final method to return all such emails is to have all employees manually
search through their emails for the specified word but this is extremely inefficient, prone to
errors and does not preclude the possibility of emails being hidden with malicious intent.
This problem can be solved using Searchable Symmetric Encryption (SSE) which devises
schemes to allow for storage of data on cloud servers while retaining the ability to return the
messages which contain a specific keyword. In particular, the SSE scheme used will need to
be verifiable which in our application setting translates to the CSP having to return exactly
those results which correspond to the query made. This prevents a CSP from hiding some
results or even from claiming an unrelated result as corresponding to the query made.

4

This document is organized as follows. Section 2 discusses relevant work. Section 4
presents a discussion of the system model, the relevance of VSSE and the scope of this work.
Section 5 discusses the implementation details of the algorithm and Section 6 introduces
the relevant security notions and also provides a brief security analysis. Finally, Section 7
describes the possible extensions.

2 Related work

[2] introduces verifiable and dynamic SSE schemes which are central to this work. The
dynamic scheme allows for the addition and deletion of documents while still supporting
search outcome verifiability. [5] introduces the notion of a Semi-Honest But Curious CSP
which is the threat model we use in this work. Further, the IND-CKA2 security notion and
its modifications are discussed in [6].

3 Our contributions

Several implementations of SSE exist, for example [7], [8], [1]. However, most of these are not
verifiable, including [7], [8]. In addition, our implementation will be secure for the SHBC-
CSP model, a security notion that was introduced in [5]. Our reference, [2], was also one of
the first to use bitmap based indexes for more space efficient encryption. The first was [9],
but this scheme was also not verifiable. Our implementation will combine verifiability and
space efficiency. [1] is indeed verifiable, but as Figure 1 (from Zhang’s repo) shows, the way
it verifies the result is simply using the search time as a proof. Unike [1], our reference [2]
uses the MAC that generates TAG and checks TAG. Therefore, this implementation would
be more complex and secure.

4 Setting

We consider a simplified version of the aforementioned problem and discuss a solution based
on [2]. This work focuses on the static case- where the number of emails and query words is
fixed and implement the verifiable SSE scheme from [2]. This assumes that all communication
that can happen has already happened and the only goal is to provide privacy preserving
searchable encryption. Considering a dynamic setting is beyond the scope of this work and
can be done using the dynamic VSSE scheme discussed in [2].

This setting is described in greater detail below

5

Figure 1: Using search time as a proof [1]

• Only two parties, the CSP and the client (generator and owner of the emails) A are
considered.

• A sends emails to a number of recipients which are stored on a server.

• The communications are encrypted and thus only the ciphertexts are available on the
server.

• A can be asked to present all emails containing a specific keyword. We ignore the
presence of single or multiple recipients as we assume that all communication that
must happen has happened and no more new emails will be generated (static setting).

• A is assumed to be honest- given a keyword, A queries the server using the same and
returns all the emails that the server specifies as containing the given keyword.

• We utilise an index based SSE scheme. Consequently, there is an initial setup phase
where A is required to generate the secure index and store it on the server. A is
assumed to have one powerful device that can be used to create the server-side data
structures the scheme requires. Once this done, A may send queries from a smaller,
less powerful device that cannot store all plaintext emails but possesses the necessary
secret information generated during the setup.

• Suppose A has numbered the emails 1, 2, 3, ... There is some third-party service that
can send A the emails corresponding to index i. The bitmap based scheme under
consideration does not return ciphertexts directly but only indicates the emails which

6

contain the keyword. This third-party service ensures that A can obtain the necessary
emails without having to store all of them.

On the other hand the server

• stores all the data given to it honestly and does not modify or delete any of it

• may try to learn information about the underlying data from the ciphertexts

• may try to suppress some emails or claim some emails correspond to a keyword even
though they do not

5 Implementation details

This sections presents the details of the algorithm used, the data used to test the implemen-
tation and some of the design decisions made to guarantee security.

5.1 Underlying algorithm

While several SSE schemes have been proposed, [2] presents the first dynamic and verifiable
scheme. A verifiable scheme provides a mechanism to check that the returned documents
indeed contain the keywords. A dynamic scheme allows documents and keywords to be
added to and deleted from the server.

The first scheme proposed, which is our focus, is verifiable but not dynamic. This scheme
includes the following algorithms:

• A randomized keygen algorithm that uses MACs to generate a integration of keys that
will be applied in buildIndex. This is illustrated in Figure 2.

Figure 2: VSSE KeyGen [2]

7

• A randomized buildIndex algorithm that the client can run to generate a secure index.
A secure index consists of a file table and a search table. The file table simply contains
tuples of index and encrypted file. The search table consists of tuples of a keyword
identifier, a bitmap, and a MAC tag. This algorithm takes as input some plaintext
files and a key and outputs the index. This is shown in Figure 3.

Figure 3: VSSE BuildIndex [2]

• A deterministic searchToken algorithm that the client can run to produce search tokens.
This algorithm takes as input a keyword and a key and returns the keyword identifier.
This is shown in Figure 4.

Figure 4: VSSE SearchToken [2]

• A deterministic search algorithm that the CSP can run with an input index and search
token, and output obscured bitmap and verification tag. This algorithm scans the
search table for the search token and returns the result if found. This is presented in
Figure 5.

• A deterministic verify algorithm that the client can run with an input verification tag,
obscured bitmap, keyword identifier, and key, and that outputs true or false. This
algorithm recomputes the tag from the bitmap, identifier and key, and compares it to
the input tag. This is presented in Figure 6.

8

Figure 5: VSSE Search[2]

Figure 6: VSSE Verify[2]

For this work, we will require the email/file data along with keywords which can be
accessed, encrypted and used by the algorithms. The collection of these is discussed subse-
quently.

5.2 Data

In the typical setting, it is usually the emails which characterize what the keywords will
be i.e “keywords” are typically determined by the general inclinations of the people who
write emails. For instance, if using only the subject line of an email as the source of the
ciphertext to query on, one keyword could be “urgent” (which might indicate all matters that
require immediate attention) or “Ameren” (indicating that a query has been made about
matters regarding a particular organization) and results from the server can be returned
correspondingly.

However, in this work we propose to discard such a notion. Instead we will first build up
a dictionary of words which is substantially larger than the usual set of keywords used and
compose files/emails using a random selection of these words. This decision is based on the
reason that a FOIA query can ask for any keyword. In that case using a subset of the words
used in previously written emails as a dictionary of keywords appears insufficient.

9

5.2.1 Keywords

To prepare a dictionary of words, we will use freely available text files of novels which can
be processed and parsed suitably. We will likely obtain our text material from Project
Gutenberg.

5.2.2 Emails

We will compose emails of different lengths using randomized permutations of the keywords.
This will not use any information about the inherent structure of the English language.

5.3 Design decisions

[2] leaves several pieces of the SSE algorithms abstract, such as which symmetric key en-
cryption algorithm to use, which cryptographic MACs are appropriate, and a value for the
security parameter.

[2] states that in order for its claimed security properties to hold, the encryption scheme
must be CPA secure. In order to satisfy this requirement, we used AES-CFB mode.

The work in [2] also requires that H1, H2, H3 be secure MACs and in addition that H3

must produce pseudorandom tags. We chose to use HMAC with SHA256 for all three MACs,
as HMAC is a PRF assuming the compression function for the hash function is a PRF [10].
To the best of our knowledge, SHA256’s compression function appears to be a PRF.

Finally, to choose the security parameter, we noticed that the keys in this scheme are
only used in hashes and symmetric encryption. HMAC requires the key length to be at least
the length of the hash output (256 bits in our case). A longer key does not provide much
more security [11]. Since a key size of 256 bits is also compatible with AES, we chose to use
256 as the security parameter.

In terms of functionality, we follow the algorithms presented in [2] fairly faithfully. How-
ever, the algorithm described does not explain how to identify the actual emails given the
server’s response. In the FOIA setting, retrieving the emails is the most important part.
Therefore, in our implementation, we used the bitmap extracted from the verify function to
determine which emails contain the keywords.

6 Security Analysis

In this section, we discuss the security notion used for this work and some associated defini-
tions.

10

https://www.gutenberg.org/
https://www.gutenberg.org/

6.1 IND-CKA2

The game for indistinguishability (of stored bitmap) against chosen keyword attacks can be
described as follows-

• An adversary A chooses the set of emails F and generates the list of keywords W . It
selects a w∗ ∈ W and shares F,W and w∗ with challenger C.

• C generates the secure index I. During the generation of the index, when w∗ is being
handled, C selects a bit randomly from {0, 1}.

– If b = 0, x∗ is the encrypted version of the bitmap corresponding to w∗.
– If b = 1, x∗ is selected randomly from the range of the encrypted bitmap.

• C completes and returns the index I to A.

• A can generate search tokens for all w ̸= w∗, call the verify function from Figure 6 and
also ask for the decryption of bitmaps by supplying some w and corresponding x||r.

• The challenge consists of the keyword identifier id(w∗).

• A outputs a bit b∗.

The scheme is said to be IND-CKA2 secure if for all PPT adversaries A,

P (b = b∗) ≤ 1

2
+ negl(λ)

where λ is the security parameter.

6.2 UF-CKA

Consider the following game

• An adversary A chooses the set of emails F and generates the list of keywords W . It
selects a w∗ ∈ W and shares F,W and w∗ with challenger C.

• C generates the secure index I. During the generation of the index, the tag for w∗ is
excluded.

• C completes and returns the index I to A.

• A can generate search tokens for all w ̸= w∗, call the verify function from Figure 6 and
also ask for the decryption of bitmaps by supplying some w and corresponding x||r. A
can also query a tag generation oracle for w other than w∗.

11

• A outputs a forged tag Tag∗ corresponding to the bitmap Bm(w
∗).

The scheme is UF-CKA secure if for all PPT adversaries A

P (V erify_algorithm(Tag∗, x∗, id(w∗)) = Accept) ≤ negl(λ)

where λ is the security parameter.

6.3 IND-CMA

Along with requiring the MAC schemes used in this work to have existential unforgeability,
we will also require that the MAC tags generated by certain MACs be indistinguishable
from elements selected randomly from the output (Tag) space of the MAC. A MAC scheme
satisfying this is said to be IND-CMA secure.

6.4 VSSE

If the SKE scheme shown in Figure 3 is IND-CPA secure and H2 is IND-CMA secure, then
VSSE is IND-CKA2 secure. The IND-CMA security of H2 guarantees that hi is indistin-
guishable from randomly generated strings. Since xi is obtained by the XOR operation with
hi, this essentially serves as a one time pad that ensures that the encrypted bitmaps are
indistinguishable from randomly generated strings. The IND-CPA security of SKE ensures
that the ciphertexts stored in Tf are indistinguishable from random.

Further, if the MAC H3 has existential unforgeability, then VSSE is UF-CKA secure. This
follows from the fact that the Tagi generated in Figure 3 is based on H3. If the probability
of forging a MAC tag is negligible for the MAC scheme H3, then the probability of forging a
Tag that passes the verification test of Figure 6 is negligible. This in turn implies UF-CKA
security.

7 Future work

Following a static setting, a natural extension would be to consider the dynamic setting
for SSE. Here, keywords and encrypted files can be added or deleted from the server. This
resembles the case of email ciphertexts stored on a server more than the static case does.
A final step would be to attempt to build a GUI around the dynamic setting where users
can send and receive email in an encrypted manner and still continue to search for emails
containing a specific keyword.

12

While much of this work has focused on obtaining an email by querying a single word, a
more practical application would be to obtain messages containing a specific phrase. How-
ever, for the model presented above, if there are n words in the dictionary and say the length
of the phrase queried is at most k, then the size of the query space is nk. Implementing the
above scheme seems expensive as there is a dramatic increase in the number of keywords
and keywords associated with the files.

A solution might lie in using the inherent structure of the English language- using a
language model to identify a select phrases and building a dictionary on them. However, we
believe this is beyond the scope of this work.

8 Conclusion

This work considers the problem of retrieving emails based on keyword queries from a
cloud service that only possesses the ciphertexts of the emails under consideration. We
restrict ourselves to the treatment of this problem in a static setting. This results in the
implementation of a verifiable SSE scheme made available at https://github.com/Milind-
Blaze/VSSE_and_DVSSE. We also identify valuable directions of future work that build
on the work in [2].

References

[1] “Vfssse.” https://github.com/zhangzhongjun/VFSSSE, 2020.

[2] R. Ramasamy, S. S. Vivek, P. George, and B. S. R. Kshatriya, “Dynamic verifiable
encrypted keyword search using bitmap index and homomorphic mac,” in 2017 IEEE 4th
International Conference on Cyber Security and Cloud Computing (CSCloud), pp. 357–
362, IEEE, 2017.

[3] “Freedom of information act (illinois).” https://research.illinois.edu/training/illinois-
freedom-information-act-foia, 2021.

[4] “Freedom of information act (united states).” https://en.wikipedia.org/wiki/Freedom_o
f_Information_Act_(United_States), 2021.

[5] Q. Chai and G. Gong, “Verifiable symmetric searchable encryption for semi-honest-
but-curious cloud servers,” in 2012 IEEE International Conference on Communications
(ICC), pp. 917–922, 2012.

13

[6] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable symmetric encryption:
improved definitions and efficient constructions,” Journal of Computer Security, vol. 19,
no. 5, pp. 895–934, 2011.

[7] “Clusion.” https://github.com/encryptedsystems/Clusion, 2020.

[8] “awesome-sse.” https://github.com/emad7105/awesome-sseimplementations.

[9] J. W. S. Y. H. Hwang and I. J. Kim, “Encrypted keyword search mechanism based on
bitmap index for personal storage services,” in 13th IEEE International Conference on
Trust, Security and Privacy in Computing and Communications, pp. 140–147, 2014.

[10] M. Bellare, “New proofs for nmac and hmac: security without collision-resistance,” in
Advances in Cryptology – CRYPTO ’06, pp. 140–147, 2014.

[11] R. C. H. Krawczyk, M. Bellare, “Hmac: Keyed-hashing for message authentication.”
https://datatracker.ietf.org/doc/html/rfc2104, 1997.

14

	Introduction
	Related work
	Our contributions
	Setting
	Implementation details
	Underlying algorithm
	Data
	Keywords
	Emails

	Design decisions

	Security Analysis
	IND-CKA2
	UF-CKA
	IND-CMA
	VSSE

	Future work
	Conclusion

