
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

BFT Protocol Forensics
CS598FTD Report Spring 2022

Milind Kumar V
mkv4@illinois.edu
University of Illinois

Champaign, IL

Chirag Shetty
cshetty2@illinois.edu
University of Illinois

Champaign, IL

1 INTRODUCTION
In this report we explore the idea of forensics for BFT protocols.
BFT protocols are designed to solve consensus among 𝑛 replicas as
long as the number of Byzantine replicas or faults 𝑓 is less than a
threshold 𝑡 . If there are more faults than 𝑡 , either safety or liveness
can be violated. Safety is violated when atleast two honest replicas
commit two different values. Forensics is a "day after" analysis,
which asks, can we identify the Byzantine nodes responsible for
this violation? More importantly, the analysis should be able to
provide irrefutable proof of culpability of those nodes. In a real
scenario, where we do not know which nodes are honest, forensics
makes sense only if the honest nodes can put together a proof
that shows the perpetrators of the protocol violation. Naturally,
the proof can not depend on logs of all replicas, since Byzantine
nodes can forge it. The best forensics would require logs of as few
nodes as possible to prove culpability of as many Byzantine nodes
as possible.

We describe parameters that characterize a forensics protocol in
Section 2. This is followed by a discussion of the problem setting and
the particular algorithm under consideration in Section 3. Section
4 discusses safety violations, forensics algorithms and the intuition
for associated proofs. In Section 5, we discuss some unexplored
ideas such as the notion of "commit" and finality, liveness violations,
trust nodes and point out some hidden costs not considered in [4].

2 FORENSICS: PARAMETERS & FEASIBILITY
For BFT protocols, forensics comes into play after a safety violation
has occurred. We wish to be able to identify as many malicious
nodes as possible with an irrefutable cryptographic proof that iden-
tifies some set of malicious nodes as culpable. Further, we also wish
to minimize the communication required between nodes after a
violation has occurred during forensics. We can formalize these no-
tions using the tuple (𝑚,𝑘, 𝑑) which describes the forensic support
available for an algorithm.
• 𝑚: This is the maximum number of Byzantine faults the forensics
algorithm allows before it can no longer detect 𝑑 > 0 malicious
nodes. For algorithms requiring a quorum of size 2𝑡 + 1, this
can reach at most 2𝑡 . If there were greater than 2𝑡 Byzantine
nodes, they would be able to simulate the algorithm without the
participation of any honest nodes and it would be impossible to
perform forensics.
• 𝑘 : This is the minimum number of transcripts the protocol re-
quires from honest nodes to guarantee the detection of faulty
nodes. The lowest value this can take is 1 as at least a single tran-
script is required to guarantee that forensics can be performed.
Note that in certain cases, such as when two nodes output dif-
ferent verifiable values in the same view in PBFT, it might be

possible to identify the culpable nodes with 0 transcripts ob-
tained after the attack. However, 𝑘 = 1 indicates that it might
not always be possible to do so for other types of attacks.
• 𝑑 : This is the number of Byzantine replicas the forensics algo-
rithm is guaranteed to identify. The maximum value this can
take is 𝑡 + 1. While a forensics algorithm might identify more
than 𝑡 + 1 nodes for particular safety violations, it can not be
guaranteed to identify more than 𝑡 + 1 malicious nodes as even
if there are more, 𝑡 + 1 nodes can cause a violation while the rest
behave like honest nodes.

From the discussion above, it can be concluded that (2𝑡, 1, 𝑡 + 1)
is the strongest support that can be offered for algorithms solving
SMR. This is achieved by PBFT-PK which is described in Section 3
and the corresponding forensic algorithm is presented in Section 4.

3 PBFT - RECAP
3.1 Problem setting
We consider the problem of state machine replication- a setting
in which the goal is to provide clients a service with the illusion
of a single non-faulty server despite some of the servers- called
replicas or nodes henceforth- being faulty [3]. Each client must
receive the same totally ordered sequence of values. In this work,
we will focus on outputting a single value rather than a sequence
of values. Further, our problem has the following three parameters:

• 𝑛: number of replicas participating the consensus protocol
• 𝑡 : maximumnumber of faults the algorithm is designed to tolerate

before the guarantees of Section 3.1.3 are violated
• 𝑓 : the actual number of faulty nodes in a given run of the algo-

rithm

3.1.1 Timing model. For this problem setting, we will consider the
model of Partial synchrony. Partial synchrony strikes a balance
between the Synchronous model where all messages, once sent,
arrive within a known, finite time bound Δ and the Asynchronous
model where an adversary can delay a message by an arbitrary
amount of time but must deliver all messages eventually. In the
Partial Synchrony model [1], there exist a known, finite time bound
Δ and a special event called the Global Stabilization Time (GST
henceforth) such that

• The adversary must cause the GST to happen after some time.
However, the time after which the adversary chooses to make
this happen is unknown.
• Any message sent at a time 𝑥 must arrive by Δ +𝑚𝑎𝑥 (𝑥,GST).
This means that any message sent after the GST must arrive
within Δ time of being sent.

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

CS598 Fault Tolerant Distributed Algorithms, Spring 2022, Champaign, IL, USA BFT Protocol Forensics

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

3.1.2 Fault model. We will consider Byzantine faults. Here, an
adversary’s actions can be arbitrarily malicious.

3.1.3 Properties. We are required to guarantee the following prop-
erties as long as the number of faulty nodes in operation are less
than the maximum number of faulty nodes the algorithm is willing
to tolerate i.e 𝑓 < 𝑡 :
• Safety: No two honest replicas will output different values
• Liveness: A value sent by the client will eventually be output

by honest replicas
• Validity: We consider external validity here, i.e replicas only

output signed values sent by the client

3.2 PBFT
The full PBFT-PK algorithm is provided in Algorithm 1. The PK
indicates that digital signatures are used for all messages. Signatures
allow forwarding of messages i.e node A can verify that a message
that node B claims was sent to it by node C was indeed sent to it by
node C. The absence of this feature is what makes it impossible to
provide forensic support for the PBFT variant using MACs instead
of signatures. Here, all to leader to all voting is used where messages
are routed through the leader. Further, note that for the guarantees
of Section 3.1.3 to hold, we require 𝑛 > 3𝑡 + 1. The algorithm has
several phases.

VIEW CHANGE In this algorithm, the nodes go through a
series of views with the variable 𝑒 being used to denote a view.
Each view has a unique leader. A view change occurs when enough
nodes timeout upon not receiving some desired message within the
required interval. This ensures liveness in the partial synchrony
setting- while it is impossible to distinguish if the leader is faulty or
is experiencing network delay, it is always possible to elect a new
leader and start over. For 𝑓 ≤ 𝑡 , we show that a leader will never
fail to propose a value previously committed by some honest node.
The view change occurs as follows
• A node that has timed out broadcasts a BLAME message. It then
collects 𝑡 + 1 BLAME messages and broadcasts them. Since we
assume that there are at most 𝑡 faulty nodes, this ensures that
at least one honest node has broadcast a BLAME message and
that the new leader is justified in stepping up. Collecting and
broadcasting 𝑡+1 BLAMEmessages also allows an honest node to
begin timeout from that point on as it knows that it has provided
the new leader with sufficient votes to step up.
• The node then exits this view, increments its view number and

sends a STATUS message indicating its current locked value.
PRE-PREPARE phase In this phase, the leader (who can step

up based on the view number) sends a PROPOSE message. This
contains a status certificate 𝑀 which consists of 𝑛 − 𝑡 = 2𝑡 + 1
STATUS messages, each indicating the value and view number the
sending node is locked on. The leader picks the value corresponding
to the highest view number from𝑀 . It is important that the leader
collect 2𝑡 + 1 STATUS messages. This ensures safety across views
as we will see in the Commit phase.

PREPARE phase Upon receiving a PROPOSE message for value
𝑣 , every node verifies that the leader indeed has sent a valid message
by verifying that the every locked value in every STATUS message
in 𝑀 is valid and that the leader indeed picked the highest lock

among the ones available to it. Once the PROPOSE message is
verified, every honest node sends a VOTE1 for 𝑣 to the leader.

COMMIT phase The leader, upon receiving 𝑛 − 𝑡 = 2𝑡 + 1
VOTE1 messages for a value 𝑣 , aggregates them into a signature
and broadcasts a COMMIT message with the value, view number
and signature. The nodes upon receiving a valid COMMIT message
lock on the value 𝑣 and the current view number, say 𝑒 . Note that
for 𝑓 ≤ 𝑡 Byzantine nodes, it is not possible for two honest nodes
to lock on different values in this phase as this would imply that
each value received 2𝑡 + 1 VOTE1s. This would in turn imply that
(2𝑡 + 1) + (2𝑡 + 1) − (3𝑡 + 1) = 𝑡 + 1 nodes double voted which is
impossible for 𝑓 ≤ 𝑡 .

Once a node locks on a value, it sends VOTE2 for the value.
REPLY phase The leader, upon receiving 𝑛 − 𝑡 = 2𝑡 + 1 VOTE2

messages for a value 𝑣 , aggregates them into a signature and broad-
casts a REPLY message with the value, view number and signature.
Upon receiving a reply message, the nodes validate it and if correct,
output the value 𝑣 . The client is also provided the signature sent
to the nodes by the leader along with the value 𝑣 in order allow it
to validate the output. Note that in order for two honest nodes to
output two different valid values in the same view, each must have
received at least 2𝑡 + 1 valid VOTE2s which is impossible from the
quorum intersection argument for 𝑓 ≤ 𝑡 . This ensures safety within
a view. During the view change, the leader collects 2𝑡 + 1 statuses
and proposes a new value. Suppose a new leader steps up in view 𝑒

and collects STATUS messages and that a value 𝑣 ′ was committed
in the previous view 𝑒 −1. Now, a commitment in view 𝑒 −1 implies
that at least 2𝑡+1 values locked on 𝑣 ′ in view 𝑒−1. For 𝑓 ≤ 𝑡 , at least
𝑡 + 1 of these locks are by honest nodes. This ensures that the status
of at least one honest node ((2𝑡 + 1) + (𝑡 + 1) − (3𝑡 + 1)) is included
in those collected by the leader. Since the commit was made in the
immediately previous view, it is the highest one and will be selected
by the leader for the PROPOSE message. This ensures safety across
views.

4 FORENSICS FOR PBFT
Now we consider the case when 𝑓 > 𝑡 and a safety violation has
occurred. 𝑓 needs to be only 1 more than 𝑡 to cause such a violation,
and that is the cases we will consider. First we look at the mecha-
nism of causing such a violation and then we present the forensics
algorithm following from it. The complete algorithm is presented
as Algorithm 2 in the Appendix.

4.1 What happens when 𝑓 is more than 𝑡?
PBFT uses two key features to ensure safety when 𝑓 < 𝑡 - quorum
intersection and signatures. Quorum intersection primarily serves
two purposes - prevent leader equivocation (in VOTE1) and ensur-
ing a value that is possibly committed by some node is re-proposed
across views. Signatures on the other hand ensure that each mes-
sages is backed up with a proof that the sender is following the
protocol. Eg: proving reception of enough BLAMES before step-
ping in as the leader. Safety violation results from Byzantine nodes’
ability to cause incorrect quorums as we see next. Signatures allow
the forensics, where in each node can be held accountable for the
messages it sent to cause the violation.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

BFT Protocol Forensics CS598 Fault Tolerant Distributed Algorithms, Spring 2022, Champaign, IL, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

2t+1

2t+1
t+1

votes for v

votes for v’

Culprits

v1

v2

vn

commit v

view e view e*

propose v’

view e’

commit v’

value changes

a) b)

Figure 1: a) Violation within a view b) Timeline of violation
across views

Safety violations can be of two kinds. Violation within the same
view i.e two honest nodes commit two different values in the same
view. Or violation can happen across views when an honest node
commits a value and after one ormany view changes another honest
node commits a different value.

4.1.1 In a view. Refer to Fig. 1(a). Any node commits when it gets
2𝑡 +1 VOTE2s. So if two honest nodes commit different values in
the same view, they both got 2t+1 VOTE2s. This implies that atleast
𝑡 +1 nodes vote for both the values, thus causing the violations.
Since the messages are signed, the list of VOTE2s received by each
of the commits will reveal the double-voters.
Algorithm: Consider lines 24 through 26 of Algorithm 2. A client
receives two REPLY messages in the same view 𝑒 with conflicting
values 𝑣 and 𝑣 ′. In this case, from the discussion above, at least
𝑡 + 1 culpable nodes can be found by finding the nodes who signed
both the first and second REPLY messages. Note that no additional
communication is needed here.

4.1.2 Across view. Analysing violation across views is slightly
more involved. Refer to Fig. 1(b). A node may commit in a value 𝑣 in
view 𝑒 and another node may commit value 𝑣 ′(≠ 𝑣) in a future view
𝑒 ′. In PBFT, the view change protocol ensures safety by requiring
the leader to collect 2𝑡 +1 statues and choosing the latest locked
value out of them. So a violation occurs if some nodes support
commit of 𝑣 in 𝑒 by sending VOTE2 (and thus locking), but do not
include that value in the status message they send to the new leader.
They can do so by sending an old lock. The new leader may thus be
unaware of the previously locked value and go on to propose one of
the old locked values. However the key point is that this malicious
behaviour may happen at some intermediate view 𝑒∗ where the
value change actually occurs. The forensics algorithm to identify
Byzantine nodes when a safety violation occurs across views is as
below
• Obtain the list of nodes that signed from the signature of the first

REPLY message.
• Request a proof from the nodes participating in the consensus

algorithm. Considering that two different values have been com-
mitted, it must be the case that a new value other than the origi-
nal reply was proposed at some point in time. Every node looks
through its transcript of PROPOSE messages to identify the view
where that happened.
• Upon discovering such a view, the node provides the client with

the PROPOSEmessage (lines 17 through 22 of Algorithm 2)where

t t

Locked on (v,e)

t

1

Atleast 1 honest status from latest view

Statuses received
by new leader

Locked on an
old e’

f = t case

f = t+1 case

t tt+1
Locked on old e

Send an old in status

Statuses received
by new leader

Locked on (v,e)

a)

b)

Figure 2: Mechanism of safety violation during view change

a new value was proposed. The intersection of the signers of the
status messages of this proposed message and those from the
first REPLY message yields at least 𝑡 + 1 malicious nodes.
• In case there are two locks that serve as the highest lock amidst
the statuses of PROPOSE message identified by the node, 𝑡 + 1
malicious nodes can once again be detected from the intersection
of the nodes that help form the two locks in view 𝑒 ′′. This is
shown in lines 18 and 19 of Algorithm 2.
• Note that obtaining one honest transcript is sufficient here.

4.2 PBFT MAC: Impossibility Intuition
In PBFT MAC signing the messages is not required. Instead MACs
ensure that the receiver of a message can be sure of who the sender
is. If a violation occurs, even if the respective honest nodes can
figure out the Byzantine nodes from its message logs, there is no
way to create an irrefutable proof. For any proof that is generated,
one could imagine a scenario where the honest node that created
the proof itself is malicious and the accused are actually honest. The
inability to ‘forward’ messages in MAC based scheme, unlike with
signatures causes PBFT MAC to not have any forensic support.

5 COMMENTS
5.1 Attack difficulty & Continuous monitoring
Firstly, in BFT protocols we assume the strongest adversary, mean-
ing the adversary can control the network and the order in which
messages arrive. This allows us to perform a worst case analysis
of the security of our algorithm. However, for academic interest,
we can ask how easy the attack we discussed is in real life. And
also consider what the best strategy is as an adversary (similar to
the slightly modified private chain attack for Nakamoto consensus
in Bitcoin).

In both cases 4.1.1 and 4.1.2, malicious nodes must get themselves
into two quorums. To cause 4.1.1, all malicious nodes vote for every
value they get without respecting the need to send only one VOTE1
or VOTE2 in a view. However for this to happen, two values must

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

CS598 Fault Tolerant Distributed Algorithms, Spring 2022, Champaign, IL, USA BFT Protocol Forensics

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

be present in the instantiation of the algorithm. This can happen
when the protocol begins and the leader is malicious. Note that
in PBFT, VOTE1 and VOTE2 need not be backed up with proofs.
Thus malicious nodes are free to send votes for any value. However,
to cause a violation, they must get a quorum. So they still need
support of honest nodes (eg: if 𝑓 =𝑡 +1, a quorum still requires 𝑡
honest nodes). But honest nodes will send out a vote only if the
pre-requisites are met (eg: getting 2𝑡 +1 VOTE1 before sending
VOTE2). Thus, the leader must be malicious and it must be the first
view. Hence although 4.1.1 looks simpler, causing a violation within
the same view requires a sophisticated attack.

In 4.1.2, the malicious nodes cause violation by omission. In order
to cause the proposal of a new value in view 𝑒∗ after the commit in
𝑒 , they are required to collaborate and this incurs a communication
cost. In order for an attack to succeed, at least 𝑡 + 1 nodes have to
1) send VOTE2s to commit the value 𝑣 in view 𝑒 2) cause a view
change in 𝑒∗ by manipulating network delay so that a lock with
a view value 𝑒 ′′ ≤ 𝑒 is the highest lock a leader receives from the
honest nodes 3) collude to send lower locks than 𝑒 ′′. As is evident,
this is quite a sophisticated attack.

Expectedly, chance of success increases as number of malicious
nodes increases. Nevertheless, it is hard to pull off an attack and it
requires continuous attempts. Meanwhile the Byzantine nodes leave
a trail of malicious behaviour. A constantly monitoring forensics
system (as was suggested in a question during our presentation)
rather than a ‘day-after’ one discussed in the paper, may succeed
in identifying the Byzantine nodes even before a violation happens.
Forensics can also be built into the nodes, where in the honest nodes
can flag Byzantine nodes. For instance, this can happen when a
honest node sees two VOTE1 or VOTE2 messages from the same
node for two values or when it sees that the PROPOSE from a new
leader contains a STATUS for a lower view from a node which had
cast VOTE2 for a relatively higher view in a previous round.

5.2 Detecting Safety Violation
Forensics deals with identifying the malicious nodes after a safety
violation has happened. An interesting question is how to detect a
violation itself without knowing which the honest nodes are. The
definition of safety is that “two honest nodes must not commit
different values". If the honest nodes were known beforehand, the
fault tolerance would be trivial. This leads to a circular argument.
In the original PBFT work, the client waits for 𝑡 +1 replies before
deciding on the value to ensure that it gets at least one honest node
to commit. To detect a violation, we can require the honest nodes
to send their committed value to all other nodes and to the client.
This way the nodes can monitor for a safety violation.

An interesting proposition is to combine safety violation detec-
tion with forensics. By delaying the actual commit by sometime
until we are sure that a violation has not occurred, we can have a
BFT protocol that can tolerate more than 𝑛/3 faults. The idea has
been formalized as multi-threshold BFT here [2]. Note that adding
a delay in commit is like making the network ‘more synchronous’.
In synchronous networks, BFT protocols can be designed to tol-
erate any number of faults (eg: Dolev-Strong). Thus the ability to
tolerate more than 𝑛/3 faults by adding a delay to commit is not

very surprising. However, we gain in latency as we do not wait for
𝑓 + 1 ‘rounds’ to ensure perfect safety as in synchronous protocols.

5.3 Liveness Violation
The paper looked at safety violation foresnics. But havingmore than
𝑡 faulty nodes can also cause liveness violation. All the malicious
nodes must do is keep quiet and not send any votes. With 𝑓 > 𝑡 ,
protocol can not end without support from the malicious nodes.
Even if the liveness is relaxed to an all-or-nothing commit, malicious
nodes can still cause violation by supporting only few honest nodes
to commit. One could detect such liveness violation by monitoring
the view number changes. If the view number keeps on increasing
without a consensus, it is likely that the malicious nodes are holding
up consensus (or that there is a network partition). However, an
irrefutable proof can not be provided this way.

5.4 Actual Communication cost
The paper defines 𝑘 as the minimum number of transcripts required
to prove culpability. But this does not reflect the actual communica-
tion cost involved in coming up with that proof. In case of violation
across views as in 4.1.2, it is important to find 𝑒∗. Doing so will
involve searching through the messages logs of all honest nodes
for all views between 𝑒 and 𝑒 ′. Thus, even if the final proof requires
only one transcript (plus the commit message), the actual commu-
nication cost is higher as the client must talk to all nodes and there
is a computational cost of searching through the transcripts.

5.5 Does having some trusted nodes help?
One of the reasons for impossibility of forensics is inability to
provide an ‘irrefutable proof’, as in the case of PBFT-MAC. In a BFT
protocol, it can happen that an honest node identifies a malicious
node from the messages it received, but may not be able to prove
so because the messages were not signed. By adding some trusted
nodes in the setup, it might be possible to have forensics in protocols
where it is not possible generally. An interesting question is, given
a protocol, how many trusted nodes do you need to ensure forensic
support.

6 CONCLUSION
In this document, we discuss the notion of forensics for BFT algorithms-
what happens after a safety violation has occurred due to a suffi-
ciently large number of adversarial nodes.We analyze the landscape
through the lens of PBFT-PK, show that it has the strongest possible
support and describe the forensics algorithm that provides it. We
also identify some attacks that can cause safety violations. Further,
we identify some costs incurred by the forensics algorithm that are
not discussed in [4]. We also provide some rudimentary analysis
of what it means to detect a safety violation and if it is possible to
integrate such detection into the actual run of the algorithm and
identify integration of trusted nodes as future work.

REFERENCES
[1] Ittai Abraham. Accessed on 4/5/2022. Synchrony, Asynchrony and Partial syn-

chrony. https://decentralizedthoughts.github.io/2019-06-01-2019-5-31-models/.
[2] Ling Ren Atsuki Momose. Accessed on 4/5/2022. Multi-threshold BFT.

https://eprint.iacr.org/2021/671.pdf.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

BFT Protocol Forensics CS598 Fault Tolerant Distributed Algorithms, Spring 2022, Champaign, IL, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

[3] Ling Ren. Accessed on 4/5/2022. Lecture 3: Consensus and Replication, CS 598
FTD. https://sites.google.com/view/cs598ftd/home.

[4] Peiyao Sheng, Gerui Wang, Kartik Nayak, Sreeram Kannan, and Pramod
Viswanath. 2021. BFT protocol forensics. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security. 1722–1743.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

CS598 Fault Tolerant Distributed Algorithms, Spring 2022, Champaign, IL, USA BFT Protocol Forensics

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

7 APPENDIX

Algorithm 1: PBFT-PK: initial value 𝑣𝑖 (notation modified from [4])
1 𝐿𝑂𝐶𝐾 ← (0, 𝑣⊥, 𝜎⊥) with selectors 𝑒 , 𝑣 , 𝜎 // 0, 𝑣⊥, 𝜎⊥: default view, value, and signature

2 𝑒 ← 1
3 while true do

// PRE-PREPARE and PREPARE

4 as a leader
5 collect ⟨STATUS, 𝑒 − 1, .⟩ from 2𝑡 + 1 distinct replicas as a status certificate M
6 𝑣 ← locked value with the highest view number in𝑀
7 if 𝑣 = 𝑣⊥ then
8 𝑣 ← 𝑣𝑖

9 end
10 broadcast ⟨PROPOSE, 𝑒, 𝑣, 𝑀⟩
11 as a replica
12 wait for valid ⟨PROPOSE, 𝑒, 𝑣, 𝑀⟩ from leader
13 send ⟨VOTE1, 𝑒, 𝑣⟩ to leader

// COMMIT

14 as a leader
15 collect ⟨VOTE1, 𝑒, 𝑣⟩ from 2𝑡 + 1 distinct replicas as the collection Σ

16 𝜎 ← aggregate-sign(Σ)
17 broadcast ⟨COMMIT, 𝑒, 𝑣, 𝜎⟩
18 as a replica
19 wait for ⟨COMMIT, 𝑒, 𝑣, 𝜎⟩ from leader
20 𝐿𝑂𝐶𝐾 ← (𝑒, 𝑣, 𝜎)
21 send ⟨VOTE2, 𝑒, 𝑣⟩ to leader

// REPLY

22 as a leader
23 collect ⟨VOTE2, 𝑒, 𝑣⟩ from 2𝑡 + 1 distinct replicas as the collection Σ

24 𝜎 ← aggregate-sign(Σ)
25 broadcast ⟨REPLY, 𝑒, 𝑣, 𝜎⟩
26 as a replica
27 wait for ⟨REPLY, 𝑒, 𝑣, 𝜎⟩ from leader
28 output 𝑣 and send ⟨REPLY, 𝑒, 𝑣, 𝜎⟩ to the client
29 call VIEWCHANGE()
30 end
31 if a replica encounters timeout in any "wait for", call procedure VIEWCHANGE()
32

33 procedure VIEWCHANGE()
34 broadcast ⟨BLAME, 𝑒⟩
35 collect ⟨BLAME, 𝑒⟩ from t + 1 distinct replicas, broadcast them
36 quit this view
37 send ⟨STATUS, 𝑒, 𝐿𝑂𝐶𝐾⟩ to the next leader
38 enter the next view, 𝑒 ← 𝑒 + 1
39 function VALID(⟨PROPOSE, 𝑒, 𝑣, 𝑀⟩)
40 𝑣∗ ← the locked value with the highest view number in𝑀
41 if (𝑣∗ = 𝑣 or 𝑣∗ = 𝑣⊥) and (𝑀 contains locks from 2𝑡 + 1 distinct replicas) then
42 return true
43 else
44 return false
45 end
46 end

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

BFT Protocol Forensics CS598 Fault Tolerant Distributed Algorithms, Spring 2022, Champaign, IL, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Algorithm 2: Forensics algorithm for PBFT-PK (notation modified from [4])
1 as a replica running PBFT-PK
2 𝑄 ← all PROPOSE messages in transcript
3 upon receiving ⟨REQUEST-PROOF, 𝑒, 𝑣, 𝑒 ′⟩ from a client
4 for𝑚 ∈ 𝑄 do
5 (𝑣 ′′, 𝑒 ′′) ← the highest lock in𝑚.𝑀
6 if 𝑚.𝑒 ∈ (𝑒, 𝑒 ′] and 𝑣 ′′ ≠ 𝑣 and 𝑒 ′′ ≤ 𝑒 then
7 send ⟨PROPOSE,𝑚⟩ to the client
8 end
9 end

10 end
11 as a client
12 upon receiving two conflicting REPLY messages
13 if the two messages are from different views then
14 ⟨REPLY, 𝑒, 𝑣, 𝜎⟩ ← the message from lower view
15 𝑒 ′ ← the view number of REPLY from higher view
16 broadcast ⟨REQUEST-PROOF, 𝑒, 𝑣, 𝑒 ′⟩
17 wait for: ⟨PROPOSE,𝑚⟩ s.t𝑚.𝑒 ∈ (𝑒, 𝑒 ′] and 𝑣 ′′ ≠ 𝑣 and 𝑒 ′′ ≤ 𝑒 where (𝑣 ′′, 𝑒 ′′) is the highest lock in𝑚.𝑀
18 if in𝑚.𝑀 there are two locks (𝑒 ′′, 𝑣1, 𝜎1) and (𝑒 ′′, 𝑣2, 𝜎2) s.t 𝑣1 ≠ 𝑣2 then
19 output 𝜎1 ∩ 𝜎2
20 else
21 output the intersection of senders in 𝑚.𝑀 and signers of 𝜎
22 end
23 else
24 ⟨REPLY, 𝑒, 𝑣, 𝜎⟩ ← first REPLY message
25 ⟨REPLY, 𝑒, 𝑣 ′, 𝜎 ′⟩ ← second REPLY message
26 output 𝜎 ∩ 𝜎 ′
27 end
28 end

7

	1 Introduction
	2 Forensics: Parameters & Feasibility
	3 PBFT - Recap
	3.1 Problem setting
	3.2 PBFT

	4 Forensics for PBFT
	4.1 What happens when f is more than t?
	4.2 PBFT MAC: Impossibility Intuition

	5 Comments
	5.1 Attack difficulty & Continuous monitoring
	5.2 Detecting Safety Violation
	5.3 Liveness Violation
	5.4 Actual Communication cost
	5.5 Does having some trusted nodes help?

	6 Conclusion
	References
	7 Appendix

